Measure Theory with Ergodic Horizons Lecture 11

Example, et eccodic equivalence relations. (a) The Vitali equivalence relation Ex on (IR, X). Recall that x Exy: <-> x-y & Q, i.e. Ex is the orbit equivalence relation of the translation action Q/SIR. let X== Lebesgue measure.

Prop. Ev is λ -ergodic. Proof. Suppose not, so there is a partition $R = A \sqcup B$ into \overline{t}_v -invariant set of positive manne. Thus by the 95% lemma, \exists interval J those 95% is B, i.e. $\lambda(BAJ)/\lambda(J) \ge 0.99$. Again by the 99% lemma, \exists interval I, with $|I| \le |J|$, whose 9.9% is A. By the density I to I the set I and I to I and I and

But q_{i+1} is 95/, $q_{i}+A$ and $q_{i}+A=A$ by Ev-invariance, so 95% of $q_{i}+J$ is A. Thus, 95% of $U(q_{i}+1)$ is A but on the other hand, 100% - 2.1% = 98%of it is B_{i} a contradiction.

(b) Irrational rotations. Identitying the unit circle S'⊆ |R² with |R/Z = S0, 1), we copy the labergue measure from [0,1) to S', and still dente it by λ. Then λ is rotation-invariant, i.e. for each angle d∈ IR, letting Td: S' > S' by rotating every xe S' by 217d, we see that Td preserves λ. We call Td a rational/irrational rotation if d is rational (irrational.

Prop. For each dell, (i) d is irreliand 2=> all orbity are deax in S' (=> all orbits are infruite.

(ii) d is irrational <=> The is h-ergodic (i.e. its orbit eq. rel. is h-ergodic). Proof. (i) Firstly, it's clear Wt if d = n, where is recluded, then early in the real is recluded. To orbit has EM elements. If d is irrational they each orbit is dense, (2/3T) Unich follows using the Eardidean algorithm, and is left as an exercise. (ii) <=. We show the contrapositive. let & be rational, e.g. d= 1. Then letting A := U Ta ([0, d/2]) is Tx-invariant and has measure 1/2. here =>. Suppose d'is irrational, hunce each orbit is deuse. let A = S' be an Ty-invariant measurable set of positive measure. We will show MY X(A) = 1 by showing ht 97% of S' is A. By the 99% lemma, there is an interval-segment I whose 99% is A, and moreover, $\lambda(I) \leq 0.01$ (i.e. 1% of S'). By the density of the orbit of one of the ecopoints of I, we can cover 58% of S' by finitely man pairwise disjoint translates $T_d^{n_1}(I)$, $T_d^{n_2}(I)$,..., $T_d^{n_n}(I)$, using that I has $\lim_{x \to 0} \lim_{x \to 0} \frac{1}{2} \lim_{x \to 0} \frac{1}{2}$ The action of To on S' can be presented as an action of Z on S' three $1 \in \mathbb{Z}$ acts as To, so $n \in \mathbb{Z}$ acts as Ta". Just like Z has its Cayley graph $-2 = 1 \quad 0 \quad 4 \quad 2$ Where $E = \frac{1}{2} (x, y) : |x-y|=1$. Usicy this, we can define the Schreier graph Goof this action Z^{SS'} as follows: for each x,56S' put an edge (x,y) E E(G): 2=> y= Ta(x) or x= Ta(y). If dis irrational, then each connected compound of C is exactly a Ty-

orbit and is isomorphic to (ag (2), i.e. a bi-infinite line. Since Cay(Z) can be propedy coloured by Z colours, we can also properly colour a by using Axion of Chroice and getting a transversal V for the orbit eq. al. Et and colouring it red and then colouring $T_{d}^{2k}(Y)$ and and T2k+1 (Y) green. But Y is non-measurable (as we will see below), so this colouring of S' is non-measurable. Colouring or 3 is non-constraint, but doesn't admit a necessrable 2-douring For any irradius a measurable 3-colouring. In see that there isn't froot. f_{a} admits a measurable 2-colouring, suppose there is: $S' = A \perp B$, there T_{a} and T_{a} (B) = t. There sets A, B are measurable and $T_{a}(A) = B$ and $T_{a}(B) = K$. T_{a} and T_{a} (B) = t. There sets A, B are T_{a}^{2} -invariant, but $T_{a}^{2} = T_{ad}$ and 2d is still traditional, hence T_{ad} is ergodic, so A, B are null or connull. But T_{a} is measure-preserving so $\lambda(A) = \lambda(T_{a}(A)) = \lambda(B)$ hence $\lambda(A) = \lambda(B) = 1/2$, a contractichion. In particular, any transversal Y is non-neasurable becase otherwise it would give a measurable 2-colouricy of Ga. (c) Eventual equality to on (2^N, 1/p) for all pe (0,1). let to be the equivalence relative on 2^N of eventual equality, i.e. x to y :<=> 4^N x(u) = y(u) <=> I m Vn >m x(u)=j(c) let yp be the Bernoulli (p) measure on 21N. Proof. Is left us a HW exercise. We just mention have the Ho is the relative of the relation of \$\$\mathbb{P}Z_2 on 2^{N} \approx TT Z/22.

New weight The phononenon but any transverse for Ev and for the irrational contation is

non-necoucable is a general phenomenon due to espolicitz: Prop. let (X, B, pl be an atomless probability space and let FNX be an action of a Ubl group F where each REF maps sets in B to extra in B. It his action is precydic, then any transversal for its orbit eq. rel. Ep is non-measurable. Coof. HW.